Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 59(10): 1871-1879, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30087203

RESUMO

Little is known about the structure-function relationship of membrane-bound lipid desaturases. Using a domain-swapping strategy, we found that the N terminus (comprising the two first transmembrane segments) region of Bacillus cereus DesA desaturase improves Bacillus subtilis Des activity. In addition, the replacement of the first two transmembrane domains from Bacillus licheniformis inactive open reading frame (ORF) BL02692 with the corresponding domain from DesA was sufficient to resurrect this enzyme. Unexpectedly, we were able to restore the activity of ORF BL02692 with a single substitution (Cys40Tyr) of a cysteine localized in the first transmembrane domain close to the lipid-water interface. Substitution of eight residues (Gly90, Trp104, Lys172, His228, Pro257, Leu275, Tyr282, and Leu284) by site-directed mutagenesis produced inactive variants of DesA. Homology modeling of DesA revealed that His228 is part of the metal binding center, together with the canonical His boxes. Trp104 shapes the hydrophobic tunnel, whereas Gly90 and Lys172 are probably involved in substrate binding/recognition. Pro257, Leu275, Tyr282, and Leu284 might be relevant for the structural arrangement of the active site or interaction with electron donors. This study reveals the role of the N-terminal region of Δ5 phospholipid desaturases and the individual residues necessary for the activity of this class of enzymes.


Assuntos
Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Membrana Celular/metabolismo , Ácidos Graxos Dessaturases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fases de Leitura Aberta/genética , Domínios Proteicos , Homologia de Sequência de Aminoácidos
2.
Sci Rep ; 8(1): 6398, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686301

RESUMO

Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-ß mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.


Assuntos
Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Endocanabinoides/metabolismo , Homeostase , Animais , Ácido Araquidônico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Ácidos Graxos Insaturados/metabolismo , Larva/metabolismo , Mutação
3.
J Infect Dis ; 217(8): 1257-1266, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29325043

RESUMO

Brucellaceae are stealthy pathogens with the ability to survive and replicate in the host in the context of a strong immune response. This capacity relies on several virulence factors that are able to modulate the immune system and in their structural components that have low proinflammatory activities. Lipopolysaccharide (LPS), the main component of the outer membrane, is a central virulence factor of Brucella, and it has been well established that it induces a low inflammatory response. We describe here the identification and characterization of a novel periplasmic protein (RomA) conserved in alpha-proteobacteria, which is involved in the homeostasis of the outer membrane. A mutant in this gene showed several phenotypes, such as membrane defects, altered LPS composition, reduced adhesion, and increased virulence and inflammation. We show that RomA is involved in the synthesis of LPS, probably coordinating part of the biosynthetic complex in the periplasm. Its absence alters the normal synthesis of this macromolecule and affects the homeostasis of the outer membrane, resulting in a strain with a hyperinflammatory phenotype. Our results suggest that the proper synthesis of LPS is central to maximize virulence and minimize inflammation.


Assuntos
Proteínas de Bactérias/fisiologia , Brucella/metabolismo , Brucelose/microbiologia , Lipopolissacarídeos/biossíntese , Animais , Brucella/patogenicidade , Gentamicinas , Inflamação/metabolismo , Camundongos , Transporte Proteico , Virulência
4.
Microbiologyopen ; 3(2): 213-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24574048

RESUMO

Bacillus subtilis responds to a sudden decrease in temperature by transiently inducing the expression of the des gene encoding for a lipid desaturase, Δ5-Des, which introduces a double bond into the acyl chain of preexisting membrane phospholipids. This Δ5-Des-mediated membrane remodeling is controlled by the cold-sensor DesK. After cooling, DesK activates the response regulator DesR, which induces transcription of des. We show that inhibition of fatty acid synthesis by the addition of cerulenin, a potent and specific inhibitor of the type II fatty acid synthase, results in increased levels of short-chain fatty acids (FA) in membrane phospholipids that lead to inhibition of the transmembrane-input thermal control of DesK. Furthermore, reduction of phospholipid synthesis by conditional inactivation of the PlsC acyltransferase causes significantly elevated incorporation of long-chain FA and constitutive upregulation of the des gene. Thus, we provide in vivo evidence that the thickness of the hydrophobic core of the lipid bilayer serves as one of the stimulus sensed by the membrane spanning region of DesK.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cerulenina/metabolismo , Ácidos Graxos Insaturados/biossíntese , Proteínas de Membrana/metabolismo , Bacillus subtilis/efeitos da radiação , Membrana Celular/metabolismo , Temperatura Baixa , Ácidos Graxos Dessaturases/metabolismo , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 412(2): 286-90, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21820408

RESUMO

Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC(50)) of PCF was 1.0 ± 0.2 µM for Isoxyl and 5 ± 2 µM for 10-TS, whereas BSF appeared more susceptible with EC(50) values 0.10 ± 0.03 µM (Isoxyl) and 1.0 ± 0.6 µM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.


Assuntos
Parasitemia/microbiologia , Estearoil-CoA Dessaturase/metabolismo , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/microbiologia , Animais , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Parasitemia/tratamento farmacológico , Feniltioureia/análogos & derivados , Feniltioureia/uso terapêutico , Interferência de RNA , Estearoil-CoA Dessaturase/genética , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/tratamento farmacológico
6.
J Bacteriol ; 193(16): 4043-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21665975

RESUMO

The Bacillus subtilis acyl lipid desaturase (Δ5-Des) is an iron-dependent integral membrane protein able to selectively introduce double bonds into long-chain fatty acids. In the last decade since its discovery, the molecular mechanism of Δ5-Des expression has been studied extensively. However, the mechanism of desaturation, which must rely on unknown bacterial proteins for electron transfer, has not yet been explored. The B. subtilis genome encodes three proteins that can act as potential electron donors of Δ5-Des, ferredoxin (Fer) and two flavodoxins (Flds) (YkuN and YkuP), which are encoded by the ykuNOP operon. Here we report that the disruption of either the fer gene or the ykuNOP operon decreases the desaturation of palmitic acid by ∼30%. Nevertheless, a fer ykuNOP mutant abolished the desaturation reaction almost completely. Our results establish Fer and the two Flds as redox partners for Δ5-Des and suggest that the Fer and Fld proteins could function physiologically in the biosynthesis of unsaturated fatty acids in B. subtilis. Although Flds have extensively been described as partners in a number of redox processes, this is the first report describing their role as electron donors in the fatty acid desaturation reaction.


Assuntos
Bacillus subtilis/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Ferredoxinas/metabolismo , Flavodoxina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação
7.
PLoS One ; 5(12): e14239, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21151902

RESUMO

BACKGROUND: Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. METHODOLOGY: Cultured procyclic (insect-stage) form (PCF) and bloodstream-form (BSF) Trypanosoma brucei cells were treated with 12- and 13-thiastearic acid (12-TS and 13-TS), inhibitors of OD, and the expression of the enzyme was knocked down by RNA interference. The phenotype of these cells was studied. PRINCIPAL FINDINGS: Growth of PCF T. brucei was totally inhibited by 100 µM of 12-TS and 13-TS, with EC(50) values of 40±2 and 30±2 µM, respectively. The BSF was more sensitive, with EC(50) values of 7±3 and 2±1 µM, respectively. This growth phenotype was due to the inhibitory effect of thiastearates on OD and, to a lesser extent, on SCD. The enzyme inhibition caused a drop in total unsaturated fatty-acid level of the cells, with a slight increase in oleate but a drastic decrease in linoleate level, most probably affecting membrane fluidity. After knocking down OD expression in PCF, the linoleate content was notably reduced, whereas that of oleate drastically increased, maintaining the total unsaturated fatty-acid level unchanged. Interestingly, the growth phenotype of the RNAi-induced cells was similar to that found for thiastearate-treated trypanosomes, with the former cells growing twofold slower than the latter ones, indicating that the linoleate content itself and not only fluidity could be essential for normal membrane functionality. A similar deleterious effect was found after RNAi in BSF, even with a mere 8% reduction of OD activity, indicating that its full activity is essential. CONCLUSIONS/SIGNIFICANCE: As OD is essential for trypanosomes and is not present in mammalian cells, it is a promising target for chemotherapy of African trypanosomiasis.


Assuntos
Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Trypanosoma brucei brucei/metabolismo , Animais , Química Farmacêutica/métodos , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Heme/química , Humanos , Ácido Linoleico/química , Ácido Oleico/química , Fenótipo , Interferência de RNA , Estearatos/química , Estearoil-CoA Dessaturase/química
8.
J Bacteriol ; 191(24): 7447-55, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820084

RESUMO

Lipoic acid is an essential cofactor required for the function of key metabolic pathways in most organisms. We report the characterization of a Bacillus subtilis mutant obtained by disruption of the lipA (yutB) gene, which encodes lipoyl synthase (LipA), the enzyme that catalyzes the final step in the de novo biosynthesis of this cofactor. The function of lipA was inferred from the results of genetic and physiological experiments, and this study investigated its role in B. subtilis fatty acid metabolism. Interrupting lipoate-dependent reactions strongly inhibits growth in minimal medium, impairing the generation of branched-chain fatty acids and leading to accumulation of copious amounts of straight-chain saturated fatty acids in B. subtilis membranes. Although depletion of LipA induces the expression of the Delta5 desaturase, controlled by a two-component system that senses changes in membrane properties, the synthesis of unsaturated fatty acids is insufficient to support growth in the absence of precursors for branched-chain fatty acids. However, unsaturated fatty acids generated by deregulated overexpression of the Delta5 desaturase functionally replaces lipoic acid-dependent synthesis of branched-chain fatty acids. Furthermore, we show that the cold-sensitive phenotype of a B. subtilis strain deficient in Delta5 desaturase is suppressed by isoleucine only if LipA is present.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Graxos/biossíntese , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Vias Biossintéticas , Meios de Cultura/química , Deleção de Genes , Técnicas de Inativação de Genes
9.
FEBS J ; 273(2): 271-80, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16403015

RESUMO

A survey of the three kinetoplastid genome projects revealed the presence of three putative front-end desaturase genes in Leishmania major, one in Trypanosoma brucei and two highly identical ones (98%) in T. cruzi. The encoded gene products were tentatively annotated as Delta8, Delta5 and Delta6 desaturases for L. major, and Delta6 desaturase for both trypanosomes. After phylogenetic and structural analysis of the deduced proteins, we predicted that the putative Delta6 desaturases could have Delta4 desaturase activity, based mainly on the conserved HX(3)HH motif for the second histidine box, when compared with Delta4 desaturases from Thraustochytrium, Euglena gracilis and the microalga, Pavlova lutheri, which are more than 30% identical to the trypanosomatid enzymes. After cloning and expression in Saccharomyces cerevisiae, it was possible to functionally characterize each of the front-end desaturases present in L. major and T. brucei. Our prediction about the presence of Delta4 desaturase activity in the three kinetoplastids was corroborated. In the same way, Delta5 desaturase activity was confirmed to be present in L. major. Interestingly, the putative Delta8 desaturase turned out to be a functional Delta6 desaturase, being 35% and 31% identical to Rhizopus oryzae and Pythium irregulareDelta6 desaturases, respectively. Our results indicate that no conclusive predictions can be made about the function of this class of enzymes merely on the basis of sequence homology. Moreover, they indicate that a complete pathway for very-long-chain polyunsaturated fatty acid biosynthesis is functional in L. major using Delta6, Delta5 and Delta4 desaturases. In trypanosomes, only Delta4 desaturases are present. The putative algal origin of the pathway in kinetoplastids is discussed.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Trypanosoma/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Gasosa , Cromatografia em Gel , Primers do DNA , Evolução Molecular , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/isolamento & purificação , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/análise , Genes de Protozoários , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Trypanosoma/genética
10.
Eur J Biochem ; 271(6): 1079-86, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15009186

RESUMO

An open reading frame with fatty acid desaturase similarity was identified in the genome of Trypanosoma brucei. The 1224 bp sequence specifies a protein of 408 amino acids with 59% and 58% similarity to Mortierella alpina and Arabidopsis thaliana Delta12 desaturase, respectively, and 51% with A. thaliana omega3 desaturases. The histidine tracks that compose the iron-binding active centers of the enzyme were more similar to those of the omega3 desaturases. Expression of the trypanosome gene in Saccharomyces cerevisiae resulted in the production of fatty acids that are normally not synthesized in yeast, namely linoleic acid (18:2Delta9,12) and hexadecadienoic acid (16:2Delta9,12), the levels of which were dependent on the culture temperature. At low temperature, the production of bi-unsaturated fatty acids and the 16:2/18:2 ratio were higher. Transformed yeast cultures supplemented with 19:1Delta10 fatty acid yielded 19:2Delta10,13, indicating that the enzyme is able to introduce a double bond at three carbon atoms from a pre-existent olefinic bond. The expression of the gene in a S. cerevisiae mutant defective in cytochrome b5 showed a significant reduction in bi-unsaturated fatty acid production, although it was not totally abolished. Based on the regioselectivity and substrate preferences, we characterized the trypanosome enzyme as a cytochrome b5-dependent oleate desaturase. Expression of the ORF in a double mutant (ole1Delta,cytb5Delta) abolished all oleate desaturase activity completely. OLE1 codes for the endogenous stearoyl-CoA desaturase. Thus, Ole1p has, like Cytb5p, an additional cytochrome b5 function (actually an electron donor function), which is responsible for the activity detected when using the cytb5Delta single mutant.


Assuntos
Citocromos b5/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Citocromos b5/química , Transporte de Elétrons , Ácidos Graxos Dessaturases/química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato , Trypanosoma brucei brucei/genética
11.
J Biol Chem ; 278(38): 36169-75, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12853449

RESUMO

Isopropyl alcohol dehydrogenase (iPDH) is a dimeric mitochondrial alcohol dehydrogenase (ADH), so far detected within the Trypanosomatidae only in the genus Phytomonas. The cloning, sequencing, and heterologous expression of the two gene alleles of the enzyme revealed that it is a zinc-dependent medium-chain ADH. Both polypeptides have 361 amino acids. A mitochondrial targeting sequence was identified. The mature proteins each have 348 amino acids and a calculated molecular mass of 37 kDa. They differ only in one amino acid, which can explain the three isoenzymes and their respective isoelectric points previously found. A phylogenetic analysis locates iPDH within a cluster with fermentative ADHs from bacteria, sharing 74% similarity and 60% identity with Ralstonia eutropha ADH. The characterization of the two bacterially expressed Phytomonas enzymes and the comparison of their kinetic properties with those of the wild-type iPDH and of the R. eutropha ADH strongly support the idea of a horizontal gene transfer event from a bacterium to a trypanosomatid to explain the origin of the iPDH in Phytomonas. Phytomonas iPDH and R. eutropha ADH are able to use a wide range of substrates with similar Km values such as primary and secondary alcohols, diols, and aldehydes, as well as ketones such as acetone, diacetyl, and acetoin. We speculate that, as for R. eutropha ADH, Phytomonas iPDH acts as a safety valve for the release of excess reducing power.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Transferência Genética Horizontal , Trypanosoma/genética , Alelos , Sequência de Aminoácidos , Animais , Southern Blotting , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Escherichia coli/genética , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma/enzimologia , Zinco/química
12.
J Bacteriol ; 185(10): 3228-31, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12730185

RESUMO

Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions delta5, delta7, and delta9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the delta5 position, regardless of the growth temperature and the length chain of the fatty acids.


Assuntos
Bacillus subtilis/enzimologia , Ácidos Graxos Dessaturases/metabolismo , Bacillus subtilis/genética , Dessaturase de Ácido Graxo Delta-5 , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Espectrometria de Massas , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...